Local Polynomial Approximation for Unsupervised Segmentation of Endoscopic Images
نویسندگان
چکیده
In this paper we present a novel technique for unsupervised texture segmentation of wireless capsule endoscopic images of the human gastrointestinal tract. Our approach integrates local polynomial approximation algorithm with the well-founded methods of color texture analysis and clustering (k-means) leading to a robust segmentation procedure which produces fine-grained segments well matched to the image contents.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملDetection and Classification of Human Colorectal Polyps
In this thesis we address the problem of segmentation and detection of colorectal polyps in endoscopic images obtained by a wireless capsule endoscopic device. As colorectal polyps are precursors to colonic cancer, and an early detection and removal of colorectal polyps can positively affect the prognosis of colonic cancer (one of the leading causes of death by cancer), it is our goal to develo...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کامل